Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Jong-Ha Choi, ${ }^{\text {a* }}$ Takayoshi Suzuki ${ }^{\text {b }}$ and Sumio Kaizaki ${ }^{\text {b }}$

${ }^{\text {a }}$ Department of Chemistry, Andong National University, Andong 760-749, Republic of Korea, and ${ }^{\mathbf{b}}$ Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka 560-0043, Japan

Correspondence e-mail: jhchoi@andong.ac.kr

Key indicators

Single-crystal X-ray study
$T=200 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
H -atom completeness 96%
Disorder in solvent or counterion
R factor $=0.030$
$w R$ factor $=0.117$
Data-to-parameter ratio $=16.7$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
(5,16-Dimethyl-2,6,13,17-tetraazatricyclo$\left[14,4,0^{1,18}, 0^{7,12}\right]$ docosane- $\kappa^{4} N$)dinitratocopper(II) trihydrate

In the title compound, $\left[\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}\left(\mathrm{C}_{20} \mathrm{H}_{40} \mathrm{~N}_{4}\right)\right] \cdot 3 \mathrm{H}_{2} \mathrm{O}$, the Cu atom lies on a crystallographic inversion centre and has a distorted octahedral geometry, with four N atoms of the macrocyclic ligand in the equatorial positions and two O atoms of the axial nitrate ligands. The long axial $\mathrm{Cu}-\mathrm{O}$ bond of 2.746 (2) \AA may result from the Jahn-Teller effect. The macrocyclic ligand adopts the most stable trans-III configuration with the two six-membered rings in chair form and two five-membered rings in a gauche form.

Comment

Tetraazamacrocyclic ligands are moderately flexible and can adopt both planar (trans) and folded (cis) configurations. For 14-membered tetraazamacrocycles such as cyclam, there are five configurational isomers, which differ in the set of chiralities of the sec-NH centres (Bakaj \& Zimmer, 1999). It is also found that the physical, chemical and spectroscopic properties of copper(II) tetraazamacrocycle complxes are largely influenced by structural characteristics such as stereochemistry, chelate-ring size and substituents of the macrocycles (Bakaj \& Zimmer, 1999). For a modified cyclam ligand with two 1,2diaminocyclohexane subunits and two methyl groups attached to the backbone C atoms, 5,16-dimethyl-2,6,13,17-tetraazatricyclo $\left[14,4,0^{1.18}, 0^{7.12}\right]$ docosane (L), only a limited number of $\mathrm{Cu}^{\mathrm{II}}, \mathrm{Ni}^{\mathrm{II}}$ and $\mathrm{Zn}^{\mathrm{II}}$ complexes have been described previously (Kang et al., 1991; Kang \& Kim, 2003; Choi et al., 1996, 1997, 1998; Choi, 2004). Here, we report the structure of a $\mathrm{Cu}^{\text {II }}$ nitrate complex with the cyclam-based macrocycle L, $\left[\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}(L)\right] \cdot 3 \mathrm{H}_{2} \mathrm{O}$, (I).

(I)

As shown in Fig. 1, the Cu 1 atom lies on a crystallographic inversion centre and has a tetragonally distorted octahedral coordination environment, comprising four N atoms of the macrocycle in the equatorial positions and two O atoms, each from one nitrato ligand, in the elongated axial positions. The axial $\mathrm{Cu}-\mathrm{O}$ bond length is relatively long (Table 1), which
may be due to the Jahn-Teller effect. The equatorial $\mathrm{Cu}-\mathrm{N}$ bond lengths are approximately equal and can be compared to those in the related complexes, $\left[\mathrm{Cu}(L)(\text { bip })_{2}\right]$ (bip $=2$ benzimidazolepropionate) and $\left[\mathrm{Cu}(L)\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \mathrm{Cl}_{2}$ (Choi et al., 1996; Choi, 2004). Two methyl groups on the six-membered chelate rings are in the anti-positions with respect to the macrocycle plane. In the 14 -membered macrocycle, the fiveand six-membered chelate rings adopt a gauche and a chair conformation, respectively. The chelate bite angles of the fiveand six-membered rings are 85.04 (7) and $94.96(7)^{\circ}$, respectively. The dimensions of the L ligand are normal, compared to the uncoordinated tetraazamacrocycle itself (Choi et al., 2006).

The complex is stabilized by the formation of intramolecular hydrogen bonds between the uncoordinated O atoms of the nitrato ligands and the secondary NH groups of the L ligand (Fig. 1 and Table 2). There are also intermolecular hydrogen bonds in the crystal structure. Atom N2 donates a H atom to O3 of the neighbouring molecule at $(x, y+1, z)$. The water molecule (O4) forms hydrogen bonds with the nitrate groups of two neighbouring molecules.

Experimental

L was prepared according to a literature method (Kang et al., 1991). A methanol suspension (15 ml) of $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}(0.242 \mathrm{~g}, 1 \mathrm{mmol})$ and $L(0.670 \mathrm{~g}, 2 \mathrm{mmol})$ was heated to reflux for 30 min . After it had been cooled to room temperature, the red-violet product was filtered off, washed with methanol, and air-dried. Recrystallization of the product from hot acetonitrile-water (1:2 $v / v)$ solution gave reddish pink crystals of (I), suitable for X-ray analysis. Analysis calculated for $\mathrm{C}_{20} \mathrm{H}_{46} \mathrm{CuN}_{6} \mathrm{O}_{9}$: C 41.55, H 8.02, N 14.54%; found: C 41.91, H 8.25, N 14.72%.

Crystal data

$\left[\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}\left(\mathrm{C}_{20} \mathrm{H}_{40} \mathrm{~N}_{4}\right)\right] \cdot 3 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=578.17$
Triclinic, $P \overline{1}$
$a=7.813$ (5) \AA
$b=8.746$ (7) \AA
$c=10.715(7) \AA$
$\alpha=93.06$ (3) ${ }^{\circ}$
$\beta=106.86(2)^{\circ}$
$\gamma=108.43(3)^{\circ}$

Data collection

Rigaku R-AXIS RAPID diffractometer
ω scans
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)
$T_{\text {min }}=0.842, T_{\text {max }}=0.916$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.030$
$w R\left(F^{2}\right)=0.117$
$S=1.19$
2969 reflections
178 parameters
H atoms treated by a mixture of independent and constrained refinement
$V=656.2(8) \AA^{3}$
$Z=1$
$D_{x}=1.463 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$\mu=0.89 \mathrm{~mm}^{-1}$
$T=200$ (2) K
Block, red-pink
$0.20 \times 0.18 \times 0.10 \mathrm{~mm}$

6435 measured reflections 2969 independent reflections 2809 reflections with $F^{2}>2 \sigma\left(F^{2}\right)$
$R_{\text {int }}=0.016$
$\theta_{\text {max }}=27.5^{\circ}$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0752 P)^{2}\right. \\
& \quad+0.2496 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.53 \mathrm{e}^{-3} \\
& \Delta \rho_{\min }=-0.42 \mathrm{e}^{-3}
\end{aligned}
$$

Figure 1
A perspective view of (I) with the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Dashed lines indicate intramolecular hydrogen bonds. Water molecules have been omitted for clarity. [Symmetry code: (i) $-x,-y,-z$.]

Table 1
Selected geometric parameters ($\AA \mathrm{A}^{\circ}$).

$\mathrm{Cu} 1-\mathrm{N} 2$	$2.021(2)$	$\mathrm{Cu} 1-\mathrm{O} 1$	$2.746(2)$
$\mathrm{Cu} 1-\mathrm{N} 1$	$2.029(2)$		
$\mathrm{N} 2-\mathrm{Cu} 1-\mathrm{N} 1$	$85.04(7)$	$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{N} 2^{\mathrm{i}}$	$94.96(7)$
$\mathrm{N} 2-\mathrm{Cu} 1-\mathrm{O} 1$	$97.83(9)$	$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{O} 1^{\mathrm{i}}$	$95.92(6)$
$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{O} 1$	$84.08(6)$	$\mathrm{N} 2-\mathrm{Cu} 1-\mathrm{O} 1^{\mathrm{i}}$	$82.17(9)$

Symmetry code: (i) $-x,-y,-z$.

Table 2
Hydrogen-bond geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 N \cdots \mathrm{O} 2$	0.93	2.05	$2.975(3)$	171
$\mathrm{~N} 2-\mathrm{H} 2 N \cdots \mathrm{O} 3^{\mathrm{ii}}$	0.93	2.32	$3.133(3)$	145
$\mathrm{O} 4-\mathrm{H} 4 P \cdots \mathrm{O} 2{ }^{\text {iii }}$	$0.79(4)$	$2.10(3)$	$2.870(3)$	$169(4)$
$\mathrm{O} 4-\mathrm{H} 4 O \cdots \mathrm{O} 1^{2}$	$0.84(4)$	$2.25(4)$	$3.036(2)$	$158(4)$

Symmetry codes: (ii) $x, y+1, z$; (iii) $-x,-y-1,-z$.

H atoms bonded to C and N atoms were positioned geometrically and refined as riding atoms, with $\mathrm{C}-\mathrm{H}=1.00(\mathrm{CH}), 0.99\left(\mathrm{CH}_{2}\right)$ and $0.98 \AA\left(\mathrm{CH}_{3}\right), \mathrm{N}-\mathrm{H}=0.93 \AA$, and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C}, \mathrm{N})$. The H atoms bonded to O 4 (water molecule) were located in a difference map and refined isotropically. The position of another water molecule (O5) can be located in the difference map, but the electron density of this peak was relatively low. Because the elemental analysis gave a satisfactory result for a trihydrate of (I), the occupancy of O5 was assumed to be 0.5 . The H atoms bonded to O 5 were not located.

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/ MSC, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

metal-organic papers

This work was supported by a Korea Research Foundation Grant funded by the Korean Government (MOEHRD, Basic Research Promotion Fund) (KRF-2005-013-C00027).

References

Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. \& Camalli, M. (1994). J. Appl. Cryst. 27, 435.
Bakaj, M. \& Zimmer, M. (1999). J. Mol. Struct. 508, 59-72.
Choi, J.-H., Clegg, W., Harrington, R. W., Yoon, H.-M. \& Hong, Y. P. (2006). Acta Cryst. E62, o644-0646.
Choi, K. Y. (2004). J. Chem. Cryst. 34, 603-607.

Choi, K.-Y., Kim, J. C., Jensen, W. P., Suh, I.-H. \& Choi, S.-S. (1996). Acta Cryst. C52, 2166-2168
Choi, K. Y., Ryu, H. \& Suh, I. H. (1998). Polyhedron, 17, 1241-1246.
Choi, K. Y., Suh, I. H. \& Kim, J. C. (1997). Polyhedron, 16, 1783-1786.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Higashi, T. (1995). Program for Absorption Correction. Rigaku Corporation, Tokyo, Japan.
Kang, S. G. \& Kim, S. J. (2003). Bull. Korean Chem. Soc. 24, 269-273
Kang, S. G., Kweon, J. K. \& Jung, S. K. (1991). Bull. Korean Chem. Soc. 12, 483-487.
Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.
Rigaku/MSC (2004). CrystalStructure. Version 3.6.0. Rigaku/MSC, The Woodlands, Texas, USA.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

